Recent trends in copper exploration - are we finding enough?

Richard Schodde

Managing Director, MinEx Consulting
Adjunct Professor, University of Western Australia

34th International Geological Congress

5th - 10th August 2012, Brisbane

Overview

- Trends in Exploration Expenditures
- Current "Hot Spots" for Exploration
 - Half of all recent discoveries were in "High Risk" countries
- Trend in Discovery Rates & Costs
 - Was 1 1.5 c/lb, now running at 2.5 c.lb Cu-eq of Resource
- Trends in conversion rates (from Discovery > Development)
 - Not all Resources get converted into Reserves
 - Not all discoveries get mined, and those that do may take many years
- Are we finding enough metal?
 - Need to find > 2x mine production
- Conclusions

Spending on copper exploration over the last 60 years

TRENDS IN EXPLORATION EXPENDITURES

Base Metal Exploration Expenditures Western World: 1950-2011

Source: Estimates by MinEx Consulting © August 2012

World map and current "Hot Spots" for copper exploration

RECENT COPPER DISCOVERIES AROUND THE WORLD

Location of major copper deposits

Copper discoveries: 1950-59

Copper discoveries: 1960-69

Copper discoveries: 1970-79

Copper discoveries: 1980-89

Copper discoveries: 1990-99

Copper discoveries: Since 2000

Much of the value is tied up in a handful of giant discoveries

TRENDS IN LOCATION AND SIZE OF COPPER DISCOVERIES

Number of copper deposits found in the World

Primary Copper deposits >0.5 Mt Cu found: 1950-2011

Caution: Chart excludes deposits with unknown discovery date, or deposits not captured in the database

Discovery: Most of the metal found is tied up in a handful of deposits Copper Resources for deposits >0.1 Mt Cu found in the World: 1950-2011

Note: Chart include minor adjustment for deposits missing from the database

Amount of copper & by-products found in the World

Primary copper deposits >0.1 Mt Cu found: 1950-2011

Note: Estimate includes adjustments for deposits with no discovery year and deposits missing from the database By-Product credits calculated on basis of 1% Cu = 3.26% Zn = 4.76% Pb = 0.30% Ni = 0.25% Mo = 0.43% Co = 0.94 Ib U_3O_8 = 0.44 tonnes Magnetite = 3.0 g/t Au = 156 g/t Ag

Quality of recent discoveries

COPPER TONNES & GRADE

Tonnes & Grade for recent discoveries

Copper Deposits >0.5 Mt Cu found 1999-2011

Over half of recent discoveries were made in risky countries

BUSINESS RISK

Business risk ratings for major Cu-production countries

Policy Potential Index (Measures the "ability to do business" there)

Source: Fraser Institute March 2012

Business risk ratings for major Cu-production countries

Policy Potential Index (Measures the "ability to do business" there)

Source: Fraser Institute March 2012

Tonnes & Grade for recent Discoveries by Country Risk

Copper Deposits >0.5 Mt Cu found 1999-2011

Note: The Country risk rankings are based on the Policy Potential Index data from the latest Fraser Institute survey

Sources: MinEx Consulting © August 2012 based on Fraser Institute March 2012

Cost per lb of Cu found in in the Western World 1950-2011

TRENDS IN DISCOVERY COSTS

Exploration expenditures and <u>number</u> of deposits found

Primary copper deposits >0.5 Mt Cu-eq found in Western World: 1950-2011

Caution: Chart excludes deposits with unknown discovery date, or deposits not captured in the database

Exploration expenditures and amount of metal found

Primary copper deposits >0.5 Mt Cu-eq found in Western World: 1950-2011

Note: Estimate includes adjustments for deposits with no discovery year and deposits missing from the database

Discovery costs in the Western World

Until recently, discovery costs have been fairly steady at around 1-1.5 c/lb Cu-eq

US Cents per lb Cu-eq in 2011\$

Note: The reported costs include credits for by-product metal

Trends in the finding and mining rates for copper

ARE WE FINDING ENOUGH METAL?

Amount of copper found and mined in the World

Primary copper deposits >0.1 Mt Cu found: 1950-2011

Source: MinEx Consulting March 2012

Are we finding enough metal?

Key drivers

- Current discovery rates
- Importance of By-Product credits
- Conversion rate for Resources > Reserves
- Conversion rates (from discovery to operating mine)
- Lag between discovery and development
- Losses on mining
- Current and (more importantly) future demand for metal

Given the long delays to convert a discovery into a mine, need to consider size of market at that time

Not all copper projects get developed as mines

Analysis based on 384 copper deposits >0.5 Mt Cu found in the World 1950-2011

For those deposits that are developed into mines, it takes on average 16 years from discovery to production

Note: Bubble size refers to the pre-mined Resource
Analysis based on 233 primary copper deposits >0.1 Mt Cu found in the World

Question – do all Reserves (and Resources) get Mined?

On "average" YES, especially for bigger deposits. However the apparent high conversion rate may be due to under-estimating the true size of the Reserves at start-up. In practice, deposits "grow" over time as mining progresses

Analysis of 32 copper mines developed in the Western World between 1970-90

Note: Analysis covers ~40% of all mines built in that period

Are we finding enough metal?

Key drivers

- Current discovery rates ... is slowing down
- Importance of By-Product credits ... only a minor effect
- Conversion rate for Resources > Reserves ... Not all gets converted
- Conversion rates (from discovery to operating mine) ... only 60-80%
- Lag between discovery and development ... typically 12-18 years
- Losses on mining ... typically 10-15%
- Current and future demand for metal ... Demand doubling every 25 years

Modifying factors

- Current inventory of undeveloped projects (and their quality)
- Ability to increase resources through lowering the cut-off grade
- Long term costs
- Impact of environmental and social factors)
- Long term prices

Given the feedback loops, is this an input or an output ??

How much metal do we need to find?

To ensure no supply interruptions in the longer term the industry needs to be finding 2-3x as much metal as it currently mines

Estimated Discovery/Production ratios

	Copper	Comments
Unit discovery costs	~ 3 US c/lb Cu	Excludes credits for By-Products
World exploration spend rate (2011 US\$m pa)	[A] = \$1670m [P] = \$4000m	Includes FSU + China
Expected amount of metal to be found	[A] = 27 Mt [P] = 65 Mt	Includes 8% adjustment for Cu associated with Au, Ni and Pb/Zn exploration
Mine Production	2011 = 16.1 Mt 2026 = 25.0 Mt	Assumes 3% pa growth over next 15 years
Discovery/Production Ratios	[A] [P]	
At 2011 Production Rate	1.7x 4.1x	Industry will be sustainable in the
At 2026 Production Rate	1.1x 2.6x	Target is > 2x longer term but only if spendi stays at high level

[[]A] = Average exploration spending rate over last decade (1999-2010)

[[]P] = Peak exploration spending rate (in 2011)

The future for copper exploration

SUMMARY/CONCLUSIONS

Summary / Conclusions (1/2)

- Exploration Expenditures are cyclical
 - Industry is currently spending ~\$4 billion on Cu up from \$1b pa 20 years ago
- The current hot spots for exploration success are Latin America, PNG, Central Africa, South Australia and China
- The industry is getting riskier
 - Over half of the copper found in last decade was in "High Risk" countries
- Discovery rates are rising for copper
 - Over last two decades has increased from 1 1.5 c/lb to 2.5 c/lb Cu-eq. This is equal to ~3.0 c/lb for Cu-only
- Not all discoveries turn into mines
 - Conversion rates are only 60%, depending on the size, quality and location
- For the successful projects, there is a lag of 16 years between discovery and development
- To be sustainable the industry needs to find ~2x what it finds
 - The ratio is projected to be ~1.1-2.6x of the 2026 copper mining rate

Summary / Conclusions (2/2)

- In the longer term the market will "balance itself" through the complex interplay between:
 - Level of exploration spending
 - Efficiency and effectiveness of exploration activities
 - Speed of converting discoveries into mines
 - The current inventory of undeveloped projects (quality & number)
 - Proportion of new projects that are economically viable
 - Innovations in technology (that make marginal projects viable)
 - Changes in mining costs and business risk
 - Change in cut-off grades (which can increase/decrease available resources)
 - Growth in primary metal demand
 - Commodity Prices
- Given the long delays between discovery and development, there is a real risk that the industry sector could face supply constraints in the short term As always, there is a shortage of quality projects!

Contact details

Richard Schodde
Managing Director
MinEx Consulting

Melbourne, Australia

Email: Richard@MinExConsulting.com

Website: MinExConsulting.com

Copies of this and other similar presentations can be downloaded from my website